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Abstract. Three simple analytical approximations are elaborated for calculation of the short-
range order parameters and their Fourier transform in disordered binary alloys with many-body
atomic interactions of arbitrary order and effective radius of action. Within all the approximations
the account of non-pair atomic interactions is reduced to the replacement of the pair mixing
potential by the effective concentration-dependent potential. From the form of such an effective
potential it is concluded that the temperature–concentration phase diagram of an alloy with non-
pair atomic interactions is asymmetrical with respect to the equiatomic composition and that the
effect on the structural properties of the alloy of such interactions decreases with concentration
decrease. These conclusions are justified by simulation within the Monte Carlo method. On the
basis of the comparison with the simulation data, an approximation which demonstrates high
numerical accuracy of results in a wide temperature–concentration interval is determined and it is
shown that its accuracy increases with the increase of the effective radius of atomic interactions.
We prove the general invariance of the statistical–thermodynamic properties of binary alloys
with respect to a number of transformations which results in symmetry of the phase diagrams
of alloys with respect to equiatomic composition in a particular case of the presence of nothing
but concentration-independent pair atomic interactions.

1. Introduction

At the present time, it is well established that account of non-pair atomic interactions is
crucial for adequate statistical–thermodynamic description of a great number of alloys. So,
for example, it was shown [1–6] that widely experimentally observed asymmetry of the
phase diagram of alloys with respect to the equiatomic composition may be caused by just
the contribution from such interactions to formation of the structural and thermodynamic
properties of the alloy†. Account of non-pair atomic interactions in the alloy was found to
be necessary also for adequate theoretical description of the experimental data on critical
indices [7] and for explanation of the stability of a number of ordered structures in alloys
[8–12].

For a variety of alloys the considerable relative contribution from non-pair atomic
interactions was calculated within the framework of the pseudopotential [13–17], generalized
perturbation [18–23], Connolly–Williams [24–29] and direct configurational averaging [30–
32] methods. The significant concentrational dependence of theeffectivepair potentials
determined through the experimental data on short-range order (SRO) in alloys [33–38] also
is indirect evidence of the possibility of a considerable contribution from such interactions

† The concentrational dependence of the atomic interactions is the second possible reason for such asymmetry.
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to the alloy energy, because such dependence is a manifestation of the presence of non-pair
atomic interactions in the alloy [18, 20, 25, 39] and/or of concentrational dependence of the
atomic interactions.

Besides the above-mentioned contributions, the indirect elastic (strain-induced)
interactions of impurity atoms caused by the relaxation of the elastic distortion fields
may also be a contributor to non-pair atomic interactions [8, 40, 41]. The possibility of
considerable contribution from non-pair atomic interactions of such a type to the alloy
energy was established within the framework of the lattice statics method of Kanzaki–
Krivoglaz [42, 43]. Often experimentally observed deviations from the Vegard law in the
dependence of the crystal lattice parameters of the alloy on composition [44] are also indirect
evidence of the presence of non-pair atomic interactions of elastic nature in alloys [45, 46].

Up to now, within the majority of elaborated analytical approximations for description
of short-range order in alloys, the pair character of atomic interactions is assumed (for
a review see [3, 4, 45–49]). A number of analytical approximations that fall outside the
scope of this assumption take into consideration only a limited number of non-pair atomic
interactions in the alloy (triplet [2, 50–53] or triplet and quadruplet [54] ones) and as a
rule are found to be considerably complicated for application. Besides, evaluation of the
numerical accuracy of these approximations was either not performed at all [2, 50–53] or
yielded unsatisfactory results [54].

The approximations based on the cluster-variation method (CVM) [3, 4, 48, 55–59]
proved to yield results of high numerical accuracy in the case of alloys with non-pair
atomic interactions [6]. However, the increase of the effective radius of such interactions
(being topical for description of actual alloys (see [49])) results in a considerable rise
of the computational efforts within the framework of these approximations. Moreover,
in the case of alloys for which the long-range strain-induced (elastic) atomic interactions
are crucial for adequate statistical–thermodynamic description, the application of the CVM
based approximations is conjectural in principle [3]. Besides, the analytical study of several
phenomena (e.g., the diffuse intensity peak splitting [60, 61]) requires an application of
the approximations whose form is different from that of the CVM based ones. Note that
all the disadvantages listed in this paragraph may be also attributed to the widely used
high-accuracy Monte Carlo method of simulation.

The aim of the present paper is to work out a simple but high-accuracy analytical
approximation for description of short-range order in alloys that takes into consideration
many-body atomic interactions of arbitrary order and effective radius of action. For this
aim to be accomplished, the Krivoglaz approach [45, 47, 62] based on application of the
thermodynamic fluctuation method within the mean-field approximation is successfully used.

2. Theory

In the general case, within the framework of the lattice gas model, the HamiltonianH of
a two-component A–B alloy with a Bravais crystal lattice can be written in the following
form [63–65]

H = V0+
N∑
n=1

1

n!

∑
R1,R2,...,Rn

V
(n)

R1,R2,...,Rn
CR1CR2...CRn

= V0+
∑
R

V
(1)
R CR

+1/2
∑
R1,R2

V
(2)
R1,R2

CR1CR2 + 1/6
∑

R1,R2,R3

V
(3)
R1,R2,R3

CR1CR2CR3 + . . . . (2.1)
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In (2.1) V0 is the energy of ‘alloy’ in which allN sites are occupied by B-type atoms,

CR =
{

1 if an A-type atom is at siteR

0 otherwise
(2.2)

∑
R

means the summation over allN sites of the crystal lattice andV (n)R1,R2,...,Rn
is the mixing

potential ofnth order (n = 1, 2, . . . , N)

V
(n)

R1,R2,...,Rn
=

N∑
s=n

1

(s − n)!
∑

Rn+1,Rn+2,...,Rs

n∑
l=0

(−1)n−l n!

l! (n− l)! E
(s)

AA ...A︸ ︷︷ ︸
l

BB...B (R1,R2, . . . ,Rs)

(2.3)

whereE(s)α1,α2,...,αs
(R1,R2, . . . ,Rs) is the interaction energy ofα1, α2, . . . , αs-type atoms

situated respectively atR1,R2, . . . ,Rs sites of a crystal lattice. In appendix A the
expressions for the mixing potentials from first to fourth orders inclusively are written
explicitly.

Within the mean-field approximation, the expression for the free energyF of the alloy
described by the Hamiltonian (2.1) is determined by the following expressions:

F = E − T S (2.4)

E = 〈H 〉 = V0+
N∑
n=1

1

n!

∑
R1,R2,...,Rn

V
(n)

R1,R2,...,Rn
PR1PR2 . . . PRn

(2.5)

S = −kB
∑
R

[PR lnPR + (1− PR) ln (1− PR)] (2.6)

PR = 〈CR〉 (2.7)

where 〈. . .〉 means the statistical average,T is the absolute temperature andkB is the
Boltzmann constant. For averaging in (2.5) the following mean-field approximation was
used [66] 〈

CR1CR2 . . . CRn

〉 = 〈PR1

〉 〈
PR2

〉
. . .
〈
PRn

〉
(2.8)

(atRi 6= Rj , wherei, j = 1, 2, . . . , n). The expression (2.6) for the entropyS has the well
known form [3, 4, 46, 48].

Within the thermodynamic fluctuation method [3, 45–47, 67], let us expand the function
δPR = PR − c in the Fourier series

δPR =
∑
k

δPk exp(−ik ·R) (2.9)

and chooseδPk corresponding to differentk as independent fluctuations (in (2.9) and below∑
k means the summation over all points in the first Brillouin zone specified by the cyclic

boundary conditions). SubstitutingPR = c + δPR into (2.4)–(2.6), introducing the Fourier
transformsδPk and Ṽ (n)k1,k2,...,kn−1

[63, 64]

Ṽ
(n)

k1,k2,...,kn−1
=

∑
R1,R2,...,Rn−1

V
(n)

R1,R2,...,Rn−1,0 exp

(
−i

n−1∑
l=1

kl ·Rl

)
(2.10a)

V
(n)

R1,R2,...,Rn
= V (n)0,R2−R1,R3−R1,...,Rn−R1

= 1/Nn−1
∑

k2,k3,...,kn

Ṽ
(n)

k2,k3,...,kn

×exp

[
i
n∑
l=2

kl · (Rl −R1)

]
(2.10b)
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and expanding the obtained expression in the series in powers ofδPk, we obtain the
following fluctuational change of the free energy

δF = kBT /2
∑
k1,k2

Bk1,k2δPk1δP
∗
k2
. (2.11)

In (2.11) all terms that are proportional to the powers ofδPk greater than the second power
are neglected and

Bk1,k2 = Nδk1,k2

[
c (1− c) βk1

]−1
(2.12)

βk =
[
1+ c (1− c) Ṽ effk / (kBT )

]−1
(2.13)

Ṽ
eff

k =
N−2∑
m=0

cm

m!
Ṽ
(2+m)
k,0,0,...,0 = Ṽ (2)k + cṼ (3)k,0 + c2/2 Ṽ (4)k,0,0+ . . . (2.14)

δk1,k2 =
{

1 if k1 = k2

0 if k1 6= k2
(2.15)

c is the concentration of component A and it is taken into account that in the disordered state
PR = c for anyR. From (2.11), following the general formalism of the thermodynamic
fluctuation method, we have〈

δPk1δP
∗
k2

〉
fluct
= [Bk1,k2

]−1 = N−1c (1− c) δk1,k2βk1 (2.16)

where 〈. . .〉fluct means the statistical average over the Gaussian distribution of the
probabilities of fluctuations [67] and[. . .]−1 the inversion of the matrix in brackets. In the
case of the disordered state of the alloy, the short-range order Warren–Cowley parameters
αR determined as the two-body correlation function divided byc (1− c)

αR1−R2 =
〈
CR1CR2

〉− c2

c (1− c) (2.17)

are expressed in terms of the fluctuation averages in the following way

αR1−R2 =
〈
PR1PR2

〉
fluct− c2

c (1− c) =
〈
δPR1δPR2

〉
fluct

c (1− c) atR1 6= R2. (2.18)

In (2.18) it is taken into account that the probability
〈
CR1CR2

〉
of simultaneously finding

two A-type atoms at given sitesR1 andR2 is determined by the expression
〈
PR1PR2

〉
fluct

only atR1 6= R2. Notice that the quantity
〈
δP 2

R

〉
fluct determines the square dispersion of the

fluctuating quantityPR rather than the correlation function atR = 0. Using (2.9), (2.16)
and (2.18), we obtain

αR = N−1
∑
k

βk exp(ik ·R) atR 6= 0. (2.19)

Then, for the Fourier transformαk of the SRO parameters

αk =
∑
R

αR exp(−ik ·R) (2.20)

taking into account the constraint [3, 4, 46, 48, 66, 68, 69]

αR=0 = N−1
∑
q

αq = 1 (2.21)

we have

αk = 1−N−1
∑
q

βq + βk. (2.22)
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The summands beforeβk in (2.22) ensure the constraint (2.21) is met. In analogy with
the Krivoglaz–Clapp–Moss (KCM) formula [45, 47, 62, 68, 69], the expression (2.22) may
be transformed as follows

αk = βk
[
N−1

∑
q

βq

]−1

(2.23)

generalizing the KCM formula to the case of taking into account the many-body atomic
interactions of arbitrary order. It is easy to show that the expression (2.23) coincides with
that obtained by Taggart and Tahir-Kheli [2, 51] in the approximation linear in the quantity
(kBT )

−1, when the non-pair atomic interactions of higher than third order vanish.
Besides, in the spirit of the Brout approach [66] the expression (2.22) may be

transformed to the following form

αk =
[

1+ c (1− c)
kBT

(
Ṽ
eff

k + µ
)]−1

(2.24)

by the replacement̃V effk → Ṽ
eff

k + µ with the subsequent determination ofµ from

N−1
∑
q

[
1+ c (1− c)

kBT

(
Ṽ effq + µ

)]−1

= 1 (2.25)

because in this case all the summands beforeβk in (2.22) cancel. The expressions (2.24)
and (2.25) may be considered as a generalization of those obtained within the framework
of the spherical model [66, 70–73] to the case of taking into account the many-body atomic
interactions of arbitrary order.

Note that in [74], in the context of a modified thermodynamic perturbation theory
within the grand canonical ensemble [49, 75], the expressions (2.13), (2.14) and (2.22) were
obtained as zero-order approximations adopting the inverse temperature as a small parameter
of expansion. When the inverse effective radius of atomic interactions plays the role of a
small parameter of expansion, the expressions (2.24) and (2.25) are derived in a zero-order
approximation.

From (2.13), (2.14) and (2.22)–(2.25) it follows that, within all the considered
approximations, the account of non-pair atomic interactions is reduced (from the point
of view of SRO calculation) to the replacementṼ (2)k → Ṽ

eff

k to which in real space the
replacement of the pair mixing potential by the effective concentration-dependent potential
V
eff

R1,R2

V
eff

R1,R2
=

N−2∑
m=0

cm

m!

∑
R′1,R

′
2,...,R

′
m

V
(2+m)
R1,R2,R

′
1,R

′
2,...,R

′
m
= V (2)R1,R2

+ c
∑
R′1

V
(3)
R1,R2,R

′
1
+ c

2

2

∑
R′1,R

′
2

V
(4)
R1,R2,R

′
1,R

′
2
+ . . . (2.26)

corresponds. The forms of̃V effk andV effR1,R2
demonstrate that the relative effect of non-pair

atomic interactions of themth order (m > 2) is proportional tocm−2 and, correspondingly,
decreases on decrease of the concentration. This fact may be qualitatively explained through
the approximate estimation of the contribution from the atomic interactions ofmth order
(m > 2) by the quantity〈

CR1CR2 . . . CRm

〉 ≈ 〈CR1

〉 〈
CR2

〉
. . .
〈
CRm

〉 = cm (2.27)
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which is equal to the probability of findingm A-type atoms in the nearest-neighbouring
sitesR1,R2, . . . ,Rm. Just the decrease of the probabilities of finding non-pair clusters of
A-type atoms results in the decrease of the relative effect of the non-pair atomic interactions
on the statistical–thermodynamic properties of alloy at concentration decrease.

From the expressions (2.22)–(2.25), it follows that, within all three considered
approximations, the values of the SRO parameters are not invariant to the replacement
c→ (1− c) in the presence of non-pair atomic interactions in the alloy. The same is true
for the expression for the critical temperatureTc of the absolute instability of the disordered
state determined by the following expressions

kBTc = −c(1− c)min
k
Ṽ
eff

k = −c(1− c)Ṽ effk0
(2.28)

kBTc = c(1− c)
N−1

∑
k

(
Ṽ
eff

k − Ṽ effk0

)−1 (2.29)

which results from the equationβ−1
k = 0 within the framework of, respectively, the

approximations (2.22), (2.23) and (2.24), (2.25) [66]†. From (2.28) and (2.29) it follows
that, for an alloy with non-pair atomic interactions, the phase diagram is asymmetrical
with respect to the equiatomic composition and that the instability wave vectork0 is
concentration dependent even in the case of concentration-independent atomic interactions.
This asymmetry is discussed below in section 5 in detail.

3. Alternative forms of the function Ṽ eff
k

There exist alternative forms for the Hamiltonian of the system under consideration to the
expression (2.1) [18, 39, 76]:

H = J0+
N∑
n=1

1

n!

∑
R1,R2,...,Rn

J
(n)

R1,R2,...,Rn
SR1SR2 . . . SRn

= J0+
∑
R

J
(1)
R SR

+1

2

∑
R1,R2

J
(2)
R1,R2

SR1SR2 +
1

6

∑
R1,R2,R3

J
(3)
R1,R2,R3

SR1SR2SR3 + . . . (3.1)

where

SR =
{

1 if an A-type atom is at siteR

−1 otherwise
(3.2)

and also

H = 80+
N∑
n=1

1

n!

∑
R1,R2,...,Rn

8
(n)

R1,R2,...,Rn
1R11R2 . . . 1Rn

= 80+
∑
R

8
(1)
R 1R

+1

2

∑
R1,R2

8
(2)
R1,R2

1R11R2 +
1

6

∑
R1,R2,R3

8
(3)
R1,R2,R3

1R11R21R3 + . . . (3.3)

where

1R = CR − c. (3.4)

In appendix B, one can find the expressions establishing a one-to-one correspondence not
only among the potentialsV (n)R1,R2,...,Rn

, J (n)R1,R2,...,Rn
and8(n)

R1,R2,...,Rn
but also among their

† The quantityTc, determined in (2.28) and (2.29), characterizes the lowest (on the temperature scale) limit of
applicability of the expressions (2.22), (2.23) and (2.24), (2.25), respectively.
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Fourier transforms. With the help of those expressions, it is easy to derive the following
expressions for the quantitỹV effk determined by (2.14)

Ṽ
eff

k = 4
N−2∑
m=0

(2c − 1)m

m!
J̃
(2+m)
k,0,0,...,0 = 4

[
J̃
(2)
k − (1− 2c)J̃ (3)k,0+

(1− 2c)2

2
J̃
(4)
k,0,0− . . .

+ (2c − 1)N−2

(N − 2)!
J̃
(N)

k,0,0,...,0

]
(3.5)

Ṽ
eff

k = 8̃(2)
k (3.6)

through the Fourier transforms̃J (n)k1,k2,...,kn−1
and 8̃(n)

k1,k2,...,kn−1
of the potentialsJ (n)R1,R2,...,Rn

and8(n)

R1,R2,...,Rn
, respectively, both determined in analogy with (2.10). From (3.5) and

(3.6) it follows that SRO in the alloy is completely determined by thepair potentials
J
(2)
R1,R2

(at equiatomic compositionc = 0.5) or8(2)
R1,R2

(at arbitrary composition) within the
framework of all three approximations considered. It is notable that the expression (2.26)
for the effective pair potentialV effR1,R2

being expressed in terms of potentialsJ (n)R1,R2,...,Rn

coincides with the corresponding expression obtained by Carlsson [25].

4. Numerical accuracy of approximations

To study the numerical accuracy of the derived approximations, in figure 1(a)–(f) for a
few model cases the dependences of the SRO parameters for the first four coordination
shells of the f.c.c. crystal lattice on the reduced temperature that were calculated through
the Monte Carlo simulations as well as by use of the expressions (2.22)–(2.25) are plotted.
For each value of concentrationc = 0.25, 0.50 and 0.75, the temperature interval[T0, 2T0]
was considered, whereT0 is the temperature of the order–disorder phase transition. Only
pair (for one or two nearest coordination shells) and triplet (for the first coordination shell)
interactions were taken into account. Such a choice of the values of the concentration
and mixing potentials permits us to reveal the tendencies in the change of the numerical
accuracy of approximations under a variation of both the concentration and effective radius
of atomic interactions.

By the coordination shell for the mixing potential ofnth order is implied the multitude
of symmetry equivalent figures formed byn crystal lattice sites, one of which is situated at
the origin. As a radius of such a coordination shell one may adopt, for example, the sum
of lengths of all edges of the corresponding geometrical figure and classify the coordination
shells by the value of this radius. Within such a classification, the triangles linking the
nearest-neighbour sites form the first coordination shell for the triplet mixing potential in
the f.c.c. crystal lattice. Note that in the case of the pair mixing potential, such generalized
concepts of the coordination shell and its radius coincide with the generally accepted ones.

In simulations, the standard Monte Carlo method within the canonical ensemble under
cyclic boundary conditions was applied [77]. The number of Monte Carlo (MC) steps (i.e.
the interchanges of two randomly chosen atoms) both for the achievement of the equilibrium
state and a subsequent averaging was not fixed but varied to obtain a relative error no more
than 3%. To fulfil such a criterion, it was generally required to perform from 1000 to
20 000 MC steps per site. To eliminate the effect of boundary conditions, in each case
the simulations were subsequently performed at increasing number of sites in a sample
N = 203, 403, 803, . . ., until convergence (with increase ofN ) of results was achieved with
a relative error less than 3%.

In figure 1, the point of the phase transition corresponds to the abrupt change of the
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Figure 1. The dependences of the SRO parameters for the first four coordination shells of the
f.c.c. crystal lattice on the reduced temperature that were calculated through the Monte Carlo
simulations as well as by use of the approximations (2.22), (2.23) and (2.24), (2.25) atV

(2)
1 > 0,

V
(3)
1 = 0.5 V (2)1 and (a)c = 0.25, V (2)2 = 0; (b) c = 0.25, V (2)2 = −0.5 V (2)1 ; (c) c = 0.5,

V
(2)
2 = 0; (d) c = 0.5, V (2)2 = −0.5 V (2)1 ; (e) c = 0.75, V (2)2 = 0; (f) c = 0.75, V (2)2 = −0.5

V
(2)
1 , whereV (n)s is the value of the mixing potential ofnth order forsth coordination shell.

temperature dependence of the SRO parameters obtained by the Monte Carlo method.
The temperatureTc determined by (2.28) corresponds to the singularity of temperature
dependence of the SRO parameters obtained by the use of approximations (2.22) and (2.23).
In table 1, for each of the cases considered, one can find the values of the temperatureT0 of
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Figure 1. Continued.

order–disorder phase transition determined by the Monte Carlo method and of the critical
temperatureTc calculated by the use of the expression (2.28) as well as the values of the
temperatureT ′0 obtained by the Monte Carlo method in [49] for the same pair interactions
but neglecting the non-pair ones. In two cases (c = 0.25, 0.50 atV (2)2 = 0), we obtained
Tc > 2T0 (see table 1) and therefore the dependences obtained by the use of the expressions
(2.22) and (2.23) are not presented in the corresponding figure 1(a),(c).

Table 1. The values of the temperatureT0 of order–disorder phase transition determined by the
Monte Carlo method and of the critical temperatureTc calculated by the use of the expression
(2.28) as well as the values of the temperatureT ′0 obtained by the Monte Carlo method in [49]
for the same pair interactions but neglecting the non-pair ones for each of the cases presented
in figure 1.

c V
(2)
2 /V

(2)
1 kBTc/V

(2)
1 kBT0/V

(2)
1 kBT

′
0/V

(2)
1 Figure 1

0.25 0 1.1250 0.458(2) 0.449(1) (a)
−0.5 1.6875 1.120(10) 1.095(5) (b)

0.50 0 2.0000 0.848(2) 0.429(1) (c)
−0.5 2.7500 1.590(10) 1.140(10) (d)

0.75 0 1.8750 1.340(10) 0.449(1) (e)
−0.5 2.4375 2.020(10) 1.095(5) (f)

Accepting the results of the Monte Carlo simulations as a standard, on the basis of
the data presented in figure 1(a)–(f) and in table 1, one may conclude the following. In all
considered cases, the approximation (2.24), (2.25) demonstrates the high numerical accuracy
of results in a wide temperature interval excluding the immediate vicinity of the phase
transition temperature. The accuracy of this approximation considerably rises when the pair
atomic interactions on the second coordination shell are taken into account (i.e. with an
increase of the characteristic radius of atomic interactions) and/or when the concentration
approaches the equiatomic value. The numerical accuracy of the approximations (2.22) and
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(2.23) also rises when the pair atomic interactions on the second coordination shell are taken
into account, but it is considerably lower than that of the approximation (2.24), (2.25) and
decreases when the concentration moves away from the equiatomic value in all considered
cases.

The comparison of the valuesT0 andT ′0 presented in table 1 of the temperatures of the
order–disorder phase transition determined by the Monte Carlo method taking and not taking
into account the non-pair atomic interactions, respectively, justifies the above analytical
conclusions about the asymmetry with respect to equiatomic composition of theT –c phase
diagram of an alloy with non-pair atomic interactions as well as about the decrease of
the effect of such interactions on the structural properties of alloy when the concentration
decreases. So, for example, from table 1 it follows that the relative changes of the phase
transition temperature due to taking account of the triplet atomic interactions are 2.0, 97.7
and 198.4% atc = 0.25, 0.50 and 0.75, respectively, in the case ofV

(2)
2 = 0.

5. Discussion of the symmetry aspects

The studies within the framework of high-accuracy cluster-variation and Monte Carlo
methods [1, 3, 6, 57] (see also section 4 of the present paper) revealed that the presence
of non-pair (even concentration-independent) atomic interactions in binary alloy results in
asymmetry of itsT –c phase diagram with respect to equiatomic composition. However, the
symmetry aspects of such a phenomenon seem to have not found the deserved consideration
and nothing more than one corresponding work [78] is familiar to us. The aim of the present
section is the proof of the general invariance of the statistical–thermodynamic properties of
binary alloys with respect to a number of transformations, which ensures the symmetry of
the phase diagrams of alloys with respect to equiatomic composition in a particular case of
the presence of nothing but concentration-independent pair atomic interactions in them.

The Hamiltonian (2.1) of a binary alloy may be rewritten in the following form [63]

H =
N∑
n=1

1

n!

B∑
α1,α2,...,αn=A

∑
R1,R2,...,Rn

E(n)α1,α2,...,αn
(R1,R2, . . . ,Rn) C

α1
R1
C
α2
R2
. . . C

αn
Rn

(5.1)

where

CαR =
{

1 if an α-type atom is at siteR

0 otherwise.
(5.2)

From the comparison of (2.2) and (5.2), it is evident thatCR = CA
R. Using the relationship

CA
R + CB

R = 1 (5.3)

one may exclude either all the quantitiesCB
R (as in (2.1)) orCA

R from (5.1). As a result,
we obtain, respectively,

H = V (0,A) +
N∑
n=1

1

n!

∑
R1,R2,...,Rn

V
(n,A)
R1,R2,...,Rn

CA
R1
CA
R2
. . . CA

Rn
(5.4)

and

H = V (0,B) +
N∑
n=1

1

n!

∑
R1,R2,...,Rn

V
(n,B)
R1,R2,...,Rn

CB
R1
CB
R2
. . . CB

Rn
(5.5)

where

V (0,A) = V0 V
(n,A)
R1,R2,...,Rn

= V (n)R1,R2,...,Rn
(5.6)
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(see (2.1), (2.3)),V (0,B) is the energy of an ‘alloy’ in which all sites are occupied by A-type
atoms,

V
(n,B)
R1,R2,...,Rn

=
N∑
s=n

1

(s − n)!
∑

Rn+1,Rn+2,...,Rs

n∑
l=0

(−1)n−l n!

l! (n− l)!
E
(s)

BB...B︸ ︷︷ ︸
l

AA ...A (R1,R2, . . . ,Rs) . (5.7)

Initial Hamiltonian (5.1) is invariant with respect to the exchange A↔ B, because the
designation of two sorts of atom by symbols A and B is an arbitrary procedure. From
the expressions (5.4) and (5.5), it follows that any statistical–thermodynamic relationship
characterizing the alloy with Hamiltonian (5.1) may be expressed in terms of either
the quantities{V (n,A)

R1,R2,...,Rn
, CA

R} or {V (n,B)R1,R2,...,Rn
, CB

R}. Since all the denoted statistical–
thermodynamic relationships must possess the symmetry of the initial Hamiltonian, they,
therefore, must be invariant with respect to the transformation{

V
(n,A)
R1,R2,...,Rn

↔ V
(n,B)
R1,R2,...,Rn

CA
R ↔ CB

R.
(5.8)

The invariance with respect to the transformation (5.8) is just the general symmetry of
binary alloys described at the beginning of this section.

To study the consequences of the derived symmetry, for instance, let us consider two
following statistical–thermodynamic relationships

ϕ
(
Tc, c, V

(2,A)
R1,R2

, V
(3,A)
R1,R2,R3

, . . .
)

= 0 (5.9)

ψ
(
αR, T , c, V

(2,A)
R1,R2

, V
(3,A)
R1,R2,R3

, . . .
)
= 0 (5.10)

which determine, respectively, the critical temperatureTc of the order–disorder phase
transition and SRO parameters in the disordered state of alloy (ϕ and ψ are certain
functionals). Note that the expressions (2.28), (2.29) and (2.22), (2.24) are the particular
cases of (5.9) and (5.10), respectively. By the use of (5.3), it is easy to obtain that

αAA
R = αBB

R = αR (5.11)

where

αAA
R1−R2

=
〈
CA
R1
CA
R2

〉− c2
A

cA (1− cA)
αBB
R1−R2

=
〈
CB
R1
CB
R2

〉− c2
B

cB (1− cB)
(5.12)

cA = 〈CA
R

〉 = c cB =
〈
CB
R

〉 = 1− c (5.13)

(αAA
R1−R2

andαBB
R1−R2

are the SRO parameters of A- and B-type atoms, respectively). From
the expressions (5.11)–(5.13), it follows that the invariance of the expressions (5.9) and
(5.10) with respect to the transformation (5.8) leads to the invariance both of the critical
temperatureTc and of the SRO parametersαR with respect to the following transformation{

V
(n,A)
R1,R2,...,Rn

↔ V
(n,B)
R1,R2,...,Rn

n > 2

c↔ (1− c).
(5.14)

In a particular case of the absence of non-pair atomic interactions in the alloy, we have
(see (5.6), (5.7), (A.2) and [63])

V
(2,A)
R1,R2

= V (2,B)R1,R2
= E(2)AA (R1,R2)− 2E(2)AB (R1,R2)+ E(2)BB (R1,R2)

V
(n,A)
R1,R2,...,Rn

= V (n,B)R1,R2,...,Rn
= 0 (n > 2).

(5.15)
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Assuming also that pair atomic interactions are independent from concentration and
substituting (5.15) into (5.14), we obtain that, in this case, bothTc andαR must be invariant
with respect to the transformation

c↔ (1− c). (5.16)

It is obvious that the asymmetry of the phase diagrams of binary alloys with respect to
equiatomic composition in the case of the presence of non-pair concentration-independent
atomic interactions (both odd and even orders) is attributable to the lack of reduction of the
transformation (5.14) to (5.16) in this case.

One may prove that the expression (2.26) forV
eff

R1,R2
, and, therefore, the expressions

(2.22)–(2.25) for SRO parameters and (2.28), (2.29) for the critical temperature are invariant
with respect to the transformation (5.14). So, for example, taking into account only pair
and triplet atomic interactions, we obtain (using (5.6, (5.7), (A.2), (A.3) and a number of
symmetry properties derived in [63])

V
eff

R1,R2
= V (2,A)R1,R2

+ cA

∑
R3

V
(3,A)
R1,R2,R3

= E(2)AA (R1,R2)− 2E(2)AB (R1,R2)+ E(2)BB (R1,R2)

+
∑
R3

[
E
(3)
AAB (R1,R2,R3)− 2E(3)ABB (R1,R2,R3)+ E(3)BBB (R1,R2,R3)

]
+ (1− cB)

∑
R3

[
E
(3)
AAA (R1,R2,R3)− 3E(3)AAB (R1,R2,R3)

+ 3E(3)ABB (R1,R2,R3)− E(3)BBB (R1,R2,R3)
]
= E(2)AA (R1,R2)

− 2E(2)AB (R1,R2)+ E(2)BB (R1,R2)

+
∑
R3

[
E
(3)
AAA (R1,R2,R3)− 2E(3)AAB (R1,R2,R3)+ E(3)ABB (R1,R2,R3)

]
+ cB

∑
R3

[
E
(3)
ABB (R1,R2,R3)− 3E(3)ABB (R1,R2,R3)+ 3E(3)AAB (R1,R2,R3)

− E(3)AAA (R1,R2,R3)
]
= V (2,B)R1,R2

+ cB

∑
R3

V
(3,B)
R1,R2,R3

. (5.17)

It should be noticed that the invariance of the statistical–thermodynamic relationships with
respect to the transformation (5.8) may be violated within the framework ofapproximate
methods. So, for instance, the expressions for SRO parameters in alloys with pair atomic
interactions, obtained both by the cluster-field method within the framework of the 4–
2-cluster approximation [79] and within the low-concentration Krivoglaz approximation
[49, 80] are not invariant with respect to the transformation (5.16) corresponding to this
case. Or, for example, in the low-concentration approximation, one may reject the higher-
order terms in the series (2.26) for̃V effk , thus generally arriving at the violation of the
invariance of the corresponding expressions (2.22)–(2.25), (2.28), (2.29) with respect to the
transformation (5.8). However, the numerical accuracy of approximations preserving the
initial symmetry of the Hamiltonian may be supposed (see, also, [49]) to be higher.

6. Conclusions

The above study of the numerical accuracy of the approximations elaborated in the present
paper testifies that a comparatively simple analytical approximation (2.24), (2.25) may be
recommended for description in a wide temperature interval of SRO parameters in actual
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alloys for which the long-range [49] and many-body (see section 1) contributions to atomic
interactions are typical. It is notable that, within the framework of this approximation,
the effective radius of atomic interactions is not limiteda priori (as, for instance, within
the Monte Carlo and cluster-variation methods) since for corresponding calculations it is
necessary to know the Fourier transforms of interatomic potentials. The obtained (see
section 3 and appendix B) different forms of this approximation allow us to apply it along
with such widely used methods as generalized perturbation Ducastelle–Gautier [18] and
Connolly–Williams [24, 76] methods for calculation of interatomic potentials in alloy.

It is of interest also to use the approximation (2.24), (2.25) for evaluation of the relative
contributions of the many-body atomic interactions through the study of experimental data
on SRO in alloys [81]. The simple analytical form of this approximation permits us to use
it for analytical study of such phenomena as the diffuse intensity peak splitting [60, 61]).
The elaborated formalism concerning the lattice gas model itself may be also useful in fields
other than alloy theory. For instance, owing to equivalence of the two-component lattice
gas and Ising models [66], the obtained results may be also used in research on magnetics.
The absence ofa priori assumptions about the space dimensionality of a crystal lattice in
the developed formalism permits us readily to apply it in investigations of low-dimension
lattice systems, as well. The approximation advanced in the present work may be also
useful in the investigations of fluids and amorphous materials within the framework of the
lattice gas model [66].
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Appendix A.

From (2.3), settingn = 1, 2, 3, 4, we obtain the following expressions for the mixing
potentials from first to fourth orders, respectively

V
(1)
R = E(1)A (R)− E(1)B (R)+

N∑
s=2

1

(s − 1)!

∑
R2,R3,...,Rs

[
E
(s)

ABB...B (R,R2, . . . ,Rs)

− E(s)BB...B (R,R2, . . . ,Rs)
]

(A.1)

V
(2)
R1,R2

= E(2)AA (R1,R2)− 2E(2)AB (R1,R2)+ E(2)BB (R1,R2)

+
N∑
s=3

1

(s − 2)!

∑
R3,R4,...,Rs

[
E
(s)

AABB ...B (R1,R2, . . . ,Rs)

− 2E(s)ABB...B (R1,R2, . . . ,Rs)+ E(s)BB...B (R1,R2, . . . ,Rs)
]

(A.2)

V
(3)
R1,R2,R3

= E(3)AAA (R1,R2,R3)− 3E(3)AAB (R1,R2,R3)+ 3E(3)ABB (R1,R2,R3)

− E(3)BBB (R1,R2,R3)+
N∑
s=4

1

(s − 3)!

∑
R4,R5,...,Rs

[
E
(s)

AAABB ...B (R1,R2, . . . ,Rs)
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− 3E(s)AABB ...B (R1,R2, . . . ,Rs)+ 3E(s)ABB...B (R1,R2, . . . ,Rs)

− E(s)BB...B (R1,R2, . . . ,Rs)
]

(A.3)

V
(4)
R1,R2,R3,R4

= E(4)AAAA (R1,R2,R3,R4)− 4E(4)AAAB (R1,R2,R3,R4)

+ 6E(4)AABB (R1,R2,R3,R4)− 4E(4)ABBB (R1,R2,R3,R4)

+ E(4)BBBB (R1,R2,R3,R4)+
N∑
s=5

1

(s − 4)!

∑
R5,R6,...,Rs

×
[
E
(s)

AAAABB ...B (R1,R2, . . . ,Rs)− 4E(s)AAABB ...B (R1,R2, . . . ,Rs)

+ 6E(s)AABB ...B (R1,R2, . . . ,Rs)− 4E(s)ABB...B (R1,R2, . . . ,Rs)

+ E(s)BB...B (R1,R2, . . . ,Rs)
]
. (A.4)

Appendix B.

Comparing the expressions (2.1) and (3.1) and using (2.2) and (3.2), it is easy to obtain a
one-to-one correspondence not only between the potentialsV

(n)

R1,R2,...,Rn
andJ (n)R1,R2,...,Rn

V
(n)

R1,R2,...,Rn
= 2n

N−n∑
m=0

(−1)m

m!

∑
Rn+1,Rn+2,...,Rn+m

J
(n+m)
R1,R2,...,Rn+m

= 2n
[
J
(n)

R1,R2,...,Rn
−
∑
Rn+1

J
(n+1)
R1,R2,...,Rn+1

+ . . .

+ (−1)N−n

(N − n)!
∑

Rn+1,Rn+2,...,RN

J
(N)

R1,R2,...,RN

]
(B.1)

J
(n)

R1,R2,...,Rn
=

N−n∑
m=0

1

2n+mm!

∑
Rn+1,Rn+2,...,Rn+m

V
(n+m)
R1,R2,...,Rn+m

= 2−n
[
V
(n)

R1,R2,...,Rn
+ 1

2

∑
Rn+1

V
(n+1)
R1,R2,...,Rn+1

+ . . .

+ 2−(N−n)

(N − n)!
∑

Rn+1,Rn+2,...,RN

V
(N)

R1,R2,...,RN

]
(B.2)

but also between their Fourier transforms

Ṽ
(n)

k2,k3,...,kn
= 2n

N−n∑
m=0

(−1)m

m!
J̃
(n+m)
k2,k3,...,kn,0,0,...,0

= 2n
[
J̃
(n)

k2,k3,...,kn
− J̃ (n+1)

k2,k3,...,kn,0
+ . . .+ (−1)N−n

(N − n)! J̃
(N)

k2,k3,...,kn,0,0,...,0

]
(B.3)

J̃
(n)

k2,k3,...,kn
=

N−n∑
m=0

1

2n+mm!
Ṽ
(n+m)
k2,k3,...,kn,0,0,...,0

= 2−n
[
Ṽ
(n)

k2,k3,...,kn
+ 1

2
Ṽ
(n+1)
k2,k3,...,kn,0

+ . . .+ 2−(N−n)

(N − n)! Ṽ
(N)

k2,k3,...,kn,0,0,...,0

]
(B.4)



SRO in alloys with many-body atomic interactions 1519

where the Fourier transform̃J (n)k1,k2,...,kn−1
of the potentialJ (n)R1,R2,...,Rn

is determined in analogy
with (2.10).

Comparing the expressions (2.1) and (3.3) and using (2.2) and (3.4), we obtain the
following analytical relationships between the potentialsV (n)R1,R2,...,Rn

and8(n)

R1,R2,...,Rn
and

between their Fourier transforms

8
(n)

R1,R2,...,Rn
=

N−n∑
m=0

cm

m!

∑
Rn+1,Rn+2,...,Rn+m

V
(n+m)
R1,R2,...,Rn+m

= V (n)R1,R2,...,Rn
+ c

∑
Rn+1

V
(n+1)
R1,R2,...,Rn+1

+ c2/2
∑

Rn+1,Rn+2

V
(n+2)
R1,R2,...,Rn+2

+ . . . (B.5)

8̃
(n)

k2,k3,...,kn
=

N−2∑
m=0

cm

m!
Ṽ
(n+m)
k2,k3,...,kn,0,0,...,0

= V (n)k2,k3,...,kn
+ cV (n+1)

k2,k3,...,kn,0
+ c2/2V (n+2)

k2,k3,...,kn,0,0
+ . . . (B.6)

V
(n)

R1,R2,...,Rn
=

N−n∑
m=0

(−c)m
m!

∑
Rn+1,Rn+2,...,Rn+m

8
(n+m)
R1,R2,...,Rn+m

= 8(n)

R1,R2,...,Rn
− c

∑
Rn+1

8
(n+1)
R1,R2,...,Rn+1

+ c2/2
∑

Rn+1,Rn+2

8
(n+2)
R1,R2,...,Rn+2

+ . . . (B.7)

Ṽ
(n)

k2,k3,...,kn
=

N−2∑
m=0

(−c)m
m!

8̃
(n+m)
k2,k3,...,kn,0,0,...,0

= 8̃(n)

k2,k3,...,kn
− c8̃(n+1)

k2,k3,...,kn,0
+ c2/28̃(n+2)

k2,k3,...,kn,0,0
+ . . . (B.8)

where the Fourier transform̃8(n)

k1,k2,...,kn−1
of the potential8(n)

R1,R2,...,Rn
is determined in

analogy with (2.10).
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